In the paper "Capacity and trainability in RNNs": https://arxiv.org/pdf/1611.09913.pdf
The author claims that all common RNNs have similar capacity. The Vanilla RNN is super hard to train. If the task is hard to learn, one should choose gated architectures, in which GRU is the most learnable for shallow networks, +RNN (Intersection RNN) performs the best for the deep networks. Although LSTM is extremely reliable, it doesn't perform the best. If the training environment is uncertain, the author suggests using GRU or +RNN.
Another paper "On the state of the art of evaluation in neural language models" https://arxiv.org/pdf/1707.05589.pdf The authors also found that the standard LSTM performs the best among 3 different architectures (LSTM, Recurrent highway networks and Neural architecture search). The models are trained using a modified ADAM optimizer. Hyperparameters including learning rate, input embedding ratio, input dropout, output dropout, weight decay, are tuned by batched GP bandits.
It is also shown that, in the Penn Treebank experiment, for the recurrent state, the variational dropout helps, the recurrent dropout indicates no advantage.
No comments:
Post a Comment